Projet de réfection des chemins Présentation à l'AGA 2025

Jean-Pierre Des Rosiers Vice-président du CA

Interventions 2024 sur les chemins aux Villas de l'Anse

- Réparation en urgence de plusieurs sections (janv./mars)
- Recrutement d'une ingénieure civil (Danielle Comeau) (février)
- Ragréage printanier sur certaines sections des chemins
- Contrat octroyé à un laboratoire géotechnique (Englobe) (avril)
- Sondages géotechniques (mai/juin)
- Rapport Englobe (juillet)
- Conclusions du rapport Englobe présentés en AGA (septembre)
- Première réunion du comité ad hoc (14 octobre)
- Travaux sur 100 m (projet-test) ch. Villa de l'Anse (novembre)

Résultats d'analyse des sondages géotechniques

- Détermination des zones problématiques totalisant environ 4 km de chemins
- 25 sondages réalisés au printemps 2024
 - Sondages dans les zones à problème
 - Caractérisation de la structure actuelle des chemins
 - Caractérisation des matériaux constituant la structure
- L'infrastructure actuelle est relativement bonne: peu d'argile et de matériaux organiques
- La granulométrie de la fondation est déficiente: trop de particules fines

	e	eNe	ь Сове	Client :			s pro			aire	s de	s	F	Dossier n°: Sondage n°: Date:		02329		-010 12-2	00
	oje	69.	fection de chaussées es du Domaine les Vil	las de l'Anse, Mago	g (Q	uébec)	6 4 8						МТ		Nord B Est évation Prof.	40	08 569 07 579	7,7	X
Ét	at	des éc	hantillons				1	Exa	men	s org			ques	sur les sols:			. 2	,10	11
1	//	Inta	ct Remanié	Bloc		Caro	tte							: Inexistant(I); Dissémin e(I); Légère(L); Moyenn			P)		
Pu	.00	hée 🗌	Dim X Dim X Diamètre	Abréviations L Limites de consisti W, Limite de plasticité I, Indice de plasticité I, Indice de plasticité W Teneur en eau (% AG Analyse granuloms S Sédimentemètrie R Réfus à l'enfencen AC Analyse chimique	(%) (%) (%) (%) (m)	M K P A U S	V Poids Absor Comp Po Poten PG Indice gonfle	re on éabili volu ption ressi itiel d e pétr emen	ganique mique i (l/mir ion un le ség rograp t sulfa	n/s) e (kN/m n. m) niaxiale prégatio chique c	(MPa) o (mm²/ du poten			▼ Niveau d'eau Profondeur: Date: Équipement d'ex	cavation Rétroca				5-
				VBS Valeur au Bleu du	sol		us Rema	nié (i	kPa)		Δ								_
d			STRATIGR	APHIE	PHIE			ÉCHANTILLONS			ESSAIS			_					
TAUTURDEUR	PROTONDEUR M PROTONDEUR			SYMBOLES	NIVEAU D'EAU (m) / DATE	TYPE ET NUMÊRO	SOUS-ÉCH.	ÉTAT	CAILLOUX (%)	BLOCS (%)		Mens ano.	RÉSULTATS	20 RÉSIS	40 60 STANCE A	80 :	IL 100 1 LLEME Pa)	12	
2-	1	0,00 -0,25 0,25	Fondation granulaire : pierre concassée de cailbre apparent 0-40mm, tel un gravier sableux, un peu de silt, gris devenant brun à 0,14m de profondeur, peu humide, de compacité apparente moyenne. Sous-fondation : gravier concassé de cailbre apparent 0-112mm, tel un silt sableux et graveleux, brun-gris, humide, de compacité apparente moyenne. Présence de cailloux et/ou blocs en proportion importante. Présence de matières organiques (racines, radicelles, terre noire, souches d'arbre, bois d'arbre, branches) en		10000000000000000000000000000000000000		MA-1		X					AG AG M.O. = 1,8					
5	-2	-1,18 1,18 -2,08 -2,10	proportion importante. Remblai : sable gravel à un peu d'argile, gris, t compacité apparente m de cailloux étou blos. matières organiques (te proportion.	très humide, de noyenne. Présence Présence de			MA-3		\bigvee								95514	E-146-00	

PU-12-24 situé sur ch. des Villas de l'Anse

	englobe @								
	Projet Réfection de chaussées								
	E	ndro	oit Ru	es du Domaine les Villas					
	É	at	des éc	hantillons					
	E	7	Inta	ct Remanié					
	Ty	/pe	de so	ndage A					
	PL	rits	X	DimXW					
	Tr	anch	hée 🗍	DimXU					
	Ta	rière		Diamètre W					
				S					
1				A					
j	7	and	STRATIGRAPI						
	PROFONDEUR - pi	PROFONDEUR	LÉVATION - PROF m	DESCRIPTION SOLS ET DU					
			0,00						
			0,00	Fondation granulaire : pie de calibre apparent 0-40mr					
	1	100	-0,25 0,25	sableux, un peu de silt, gris 0,14m de profondeur, peu l					
	- 5			Compacité apparente moye Sous-fondation : gravier d					
	2			calibre apparent 0-112mm, sableux et graveleux, brun-					
	- 88			de cailloux et/ou blocs en p					
	3-	1		importante. Présence de m organiques (racines, radice					
	200	3)	-1,18	souches d'arbre, bois d'arb proportion importante.					
	4	8	1,18	Remblai : sable graveleux à un peu d'argile, gris, très					
	5-			compacité apparente moye de cailloux et/ou blocs. Pré					
	200			matières organiques (terre proportion.					
	6-	0		243411501995140122					
	3	-2	-2,08						
	7		2,08 -2,10	Sol naturel : sable gravele traces à un peu d'argile, gri					
	ı		2,10	compacité apparente moye de cailloux et/ou blocs.					

de 2,10m.

englobe	
---------	--

4222, boul. Bourque Sherbrooke, J1L 1W6 Téléphone: (819) 563-3372

Essais sur sols, granulats et autres matériaux

Client Association des propriétaires des Villas de l'Anse

Projet : Réfection chaussée Villas de l'anse_ Mg; Réfection Chaussée

Villas de l'anse MG.

Endroit : Rue du Domaine Les Villas de l'Anse

20

Dossier: 02402329.000-0100-0102

Spécification nº 1

Réf. client :

Rapport nº : 20

Rév. 0

Page 1 de 1

Échantillonnage

Nº d'échantillon

Nº d'échantillon client

Type de matériau

Source première; ville Endroit échantillonné

PU-12-24; MA-01; 0.00 à 0.25 m

Référence Divers Usage Calibre Classe

2024-05-31 Prélevé le Amadou Lotfi Sangare Par

2024-06-12 Reçu le

Analyse granulométrique (NQ 2501-025)

TAMIS	TAMISAT (%)					
(mm)	EXIGENCES	MESURÉ	Silt et argile	Sable	Gravier	
112			x Granulométi	io	//	100
80					/ (90
56					17	80
40		100				70
28		98				7
20	0	85				
14		83				50
10		62		The state of the s		40 2
5		50		The state of the s		30 💆
2,5		40		Value Spirit		20
1,25	1	32	MG20b			
0,630		27	MG20 - = = :			10
0,315		22	0.01			0
0,160		19	0,01	0,1 1 Tamis (mm) 10	100
0,080		15,9	Cu: Cc:	MF: 4,10 D ₁₀ :	D ₃₀ : 0,948 D ₆₀	: 9,020

Masse vol. sèche maximale Humidité optimale Retenu 5 mm kg/m³ %

Proportions selon analyse granulométrique (%)

Cailloux: 0,0 Sable: 33,8 Gravier: 50,3 Silt et argile : 15,9

matières organiques (terre noi

Sol naturel: sable graveleux traces à un peu d'argile, gris, s

compacité apparente moyenne

de cailloux et/ou blocs. Fin du puits d'exploration à un

de 2.10m.

4222, boul. Bourque Sherbrooke, J1L 1W6 Téléphone: (819) 563-3372

Essais sur sols, granulats et autres matériaux

Association des propriétaires des Villas de l'Anse Client :

Projet : Réfection chaussée Villas de l'anse_Mg; Réfection Chaussée

Villas de l'anse MG.

Endroit : Rue du Domaine Les Villas de l'Anse Dossier : 02402329.000-0100-0102

Réf. client :

Rapport no :

Rév. 0 1 de 1

Échantillonnage

Nº d'échantillon 21 Nº d'échantillon client Type de matériau Source première; ville

Endroit échantillonné : PU-12-24; MA-02; 0.25 à 1.18 m Spécification nº 1 Divers

Usage Calibre

Référence

Classe

2024-05-31 Prélevé le Amadou Lotfi Sangare

2024-06-12 Reçu le

Analyse granulométrique (NQ 2501-025)

TAMIS	TAMISA	T (%)				
(mm)	EXIGENCES	MESURÉ	Silt et argile	Sable	Gravier	
112		100	x Granule	ométrie		100
80		71				90
56		71				/ 80
40		57			/ xx	70
28		55				60 8
20		55				
14		54		- X	X	50 18
10		53		and a sign and a sign a		40 E
5		50		Ninasan Maria		30 0
2,5		47				20
1,25		44	MG20b			10
0,630		41	MG20		11% //	10
0,315		37	0.04		7%	++ 0
0,160		32	0,01	0,1 1 Tamis	(mm) 10	100
0,080		26,9	Cu: Se:	ir: 3,49 D ₁₀ :	D ₃₀ : 0,119 D ₆₀ :	43,151

Masse vol. sèche maximale Humidité optimale Retenu 5 mm kg/m3

Proportions selon analyse granulométrique (%) Cailloux: 29,0 Sable: 22,8

Gravier: 21,3 Silt et argile :

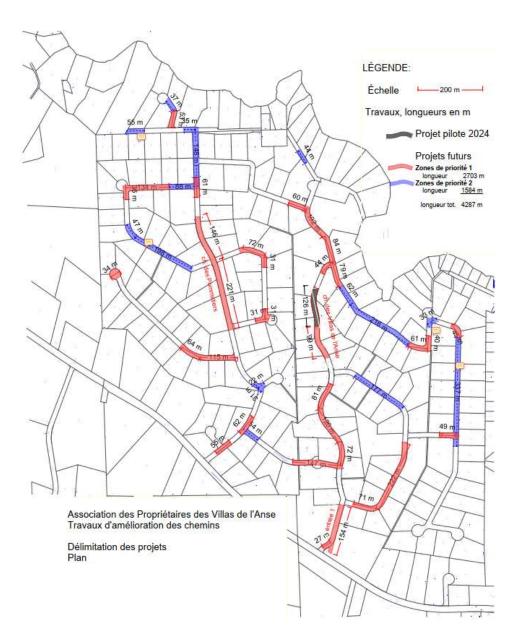
Teneur en particules fines

		Sondages Er	nglobe 2024		
no.	Fondation	Sous-fondation	no.	Fondation	Sous-fondation
PU-01-24	19.3	6.9			
PU-02-24	18.6	ND			
PU-03-24	12.2	ND			
PU-04-24	ND	16.7	PU-16-24	20.5	ND
PU-05-24	16.4	ND	PU-17-24	17.6	20.1
PU-06-24	14.8	11.8	PU-18-24	11.9	12
PU-07-24	15.4	ND	PU-19-24	19.6	ND
PU-08-24	19.3	ND	PU-20-24	18.2	13.7
PU-09-24	18.2	ND	PU-21-24	17.8	ND
PU-10-24	19.3	10.4	PU-22-24	14	11
PU-11-24	19.3	ND	PU-23-24	18.8	5.9
PU-12-24	15.9	26.9	PU-24-24	22.9	ND
PU-13-24	16	ND	PU-25-24	7.6	19.5
PU-14-24	20.2	10.5	PU-26-24	13.5	ND
			minimum	12.2	6.9
			maximum	20.2	26.9
			moyenne	17.3	13.9

Note : la norme MTQ/BNQ limite la fraction acceptable <u>maximale</u> à 7% (MG20) et à 11%(MG20b)

Membres du comité ad hoc sur la réfection des chemins

- Paul Croteau
- Éric Dallaire
- Jacques Désilets
- Roch Leblanc
- Robert Proulx
- Jean-Guy Saint-Martin
- Charles Smith


Représentants du CA

- Pierre Desbiens
- Jean-Pierre Des Rosiers
- Charles Gagnon

Interventions 2025 sur les chemins aux Villas de l'Anse

- Épandage d'urgence de pierre grossière sur plusieurs sections des chemins (mars)
- Relevés par des membres du comité ad hoc des dommages en mars et cartographie des zones de réparation de priorité P1 et P2
- Réunions du comité ad hoc (21 fév et 26 avril)
- Ragréage printanier des chemins
- Rapport d'étape du comité ad hoc au CA (mai)
- Demande de permis pour des travaux en 2025 (mai)

Relevé des dommages – mars 2025

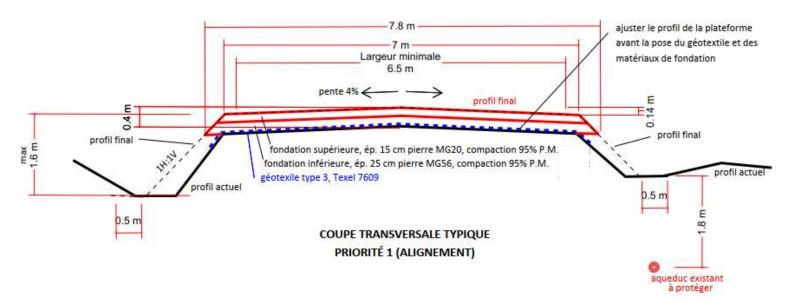
Critères de classification:

- P1 rétention d'eau, boue, orniérage marqué
- P2 rétention d'eau, boue
- Ailleurs: chemin en bon état

Causes du comportement au dégel

Diagnostic

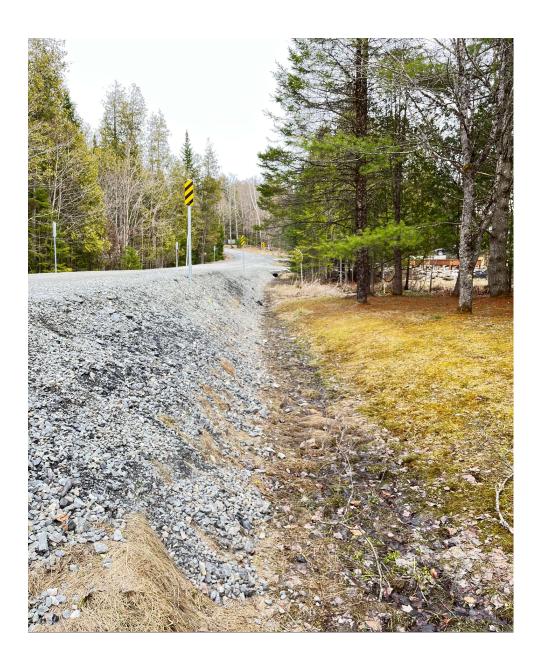
- Excès important de particules fines dans la fondation, soit les 40 cm en surface
- Particules fines dans la structure de l'ordre de 17% en moyenne (maximum 22,9%), soit 2 à 3 fois la fraction acceptable (7% à 11%)
- Matériaux d'origine douteuse à certains endroits
- Propriétés douteuses des abrasifs et des matériaux de rechargement
- Matériaux devenant saturés à la surface de roulement, perte de capacité portante, orniérage durant les périodes de dégel
- Cycles plus fréquents de gel/dégel
- Sous-fondation inadéquate par endroits (ex. Pointe Drummond)


Niveau élevé des eaux en zones basses et près des ruisseaux

- Affaissement de la chaussée
- Migration des particules vers les fossés

PC1

Projet test de l'automne 2024


- Longueur de 100 m sur le chemin des Villas de l'Anse, plus transitions
- Géotextile de séparation sur la surface existante (plate-forme)
- Ajout de 40 cm de pierre concassée compactée: 25 cm MG56 et 15 cm MG20b
- Rehaussement sensible de la plateforme, hauteur de talus jusqu'à 1.6 m

Diapositive 13

PC1 Quel matériaux, combien de couches?

Paul Croteau; 2025-05-11T18:19:41.765

Observations sur projet test de 2024

- Tenue satisfaisante de la surface de roulement, aucun orniérage
- Quelques nids de poule, conséquemment le dévers doit être augmenté
- Les talus à 45 degrés (1H:1V) sont stables
- Ragréage des entrées privées sans problème malgré le rehaussement
- Creusage des fossés non pertinent, sauf très localement, car la nappe phréatique est basse
- Rehaussement de la surface avantageux pour l'assèchement de la chaussée

Solution technique proposée pour améliorer la capacité portante et le drainage

- Largeur (7 m) et pentes (4%) de la plate-forme selon les normes
- Rehaussement de la chaussée avec un matériel normalisé (40 cm P1, 20 cm P2)
- Talus 1H:1V, hauteur limitée à 1.6 m
- Remplacement partiel ou complet de la fondation existante là où le rehaussement pose problème
- Dans les pires zones, excaver aussi la sous-fondation et la remplacer
- Ragréage des fossés sans excavation, pour ne pas mettre à risque l'aqueduc
- Ragréage des entrées privées
- Provision pour réparation/remplacement de ponceaux, jugé peu probable

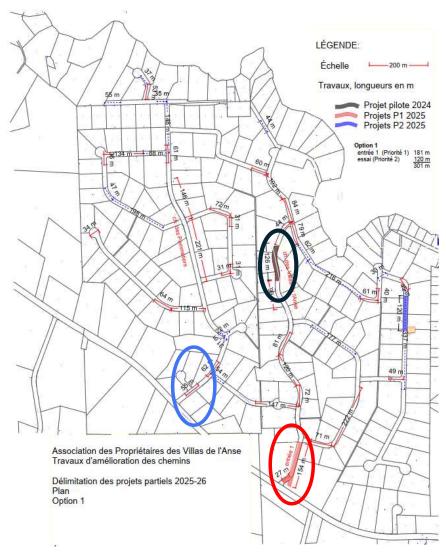
Constats du comité Ad Hoc

- 1. Les segments de priorité P1 nécessitent des réparations dès que possible
- 2. Les segments de priorité P2 sont moins chers à corriger mais tout report pourrait aggraver l'endommagement et augmenter les coûts
- 3. Reporter des projets et/ou les étaler dans le temps coûte plus cher
- 4. Les coûts annuels de l'entretien printanier, estimés à 30 000\$, diminueront à mesure que les projets seront réalisés
- 5. Les chemins sont un actif primordial de l'APVA: leur bon état contribue à la valeur des propriétés des membres de l'APVA

Recommandations du comité ad hoc

- 1. Le Comité Ad hoc recommande de procéder à la réfection de toutes les sections de chemin prioritaires en 2026
- 2. Estimé total des coûts pour le projet des chemins 1,564 M\$ pour 4,2 km de chemins
- 3. Autres recommandations:
 - a) assurer un contrôle de qualité rigoureux des matériaux
 - b) pour l'entretien hivernal, utiliser un abrasif de sable naturel, conforme aux normes du MTQ

Orientations du CA


- Priorité donnée aux chemins à forte circulation
- Approche tenant compte des autres projets du Plan de maintien de actifs
- Dans ce contexte, l'ampleur des interventions sera guidée par un cadre financier global

Plan d'action du CA pour la suite des travaux sur les chemins

- 1. Cadre financier (PMA) travaux sur les chemins: 850 000\$
- 2. Travaux prévus à l'automne 2025 (140 000\$)
 - a) Engagement d'une firme de professionnels (ARTELIA)
 - b) Plans et devis et appel d'offres pour le projet de l'automne 2025 (en cours)
- 3. Travaux futurs à compter de 2026 (710 000\$)
 - a) Zones d'intervention: Chemin des Villas de l'Anse, Chemin des Pommetiers et Nordet/pointe Drummond sur une distance de 1,6 km
 - b) Réalisation par ARTELIA des plans et devis pour les sections prioritaires à corriger à compter de 2026 et appel d'offre pour les travaux

Travaux prévus à l'automne 2025

- Projet-pilote 2024
- Projet Entrée 1
- Projet Entrée 2

Travaux prévus dès 2026

- A partir de 2026, les interventions sur les chemins seront concentrées sur les portions problématiques des voies passantes suivantes:
 - Chemin des Villas de l'Anse
 - Chemin des Pommetiers et
 - Chemin de la Pointe Drummond/Nordet
- L'objectif est de corriger environ 1,6 km de chemins
- Les types d'intervention techniques dépendront des conditions dans les zones identifiées mais suivront en intégralité les solutions techniques préparées par le Comité ad hoc

La réfection des chemins:

Un projet structurant en soutien à la valeur de nos propriétés et à notre qualité de vie

